IGSNRR OpenIR
(Note: the search results are based on claimed items)

Browse/Search Results:  1-7 of 7 Help

Filters        
Selected(0)Clear Items/Page:    Sort:
Spatio-Temporal Variation of PM2.5 Concentrations and Their Relationship with Geographic and Socioeconomic Factors in China SCI/SSCI论文
2014
Authors:  Lin G.;  Fu J. Y.;  Jiang D.;  Hu W. S.;  Dong D. L.;  Huang Y. H.;  Zhao M. D.
Adobe PDF(1151Kb)  |  Favorite  |  View/Download:73/29  |  Submit date:2014/12/24
Pm2.5  Gdp  Population  Land Use Change  Geographically Weighted  Regression  Aerosol Optical Depth  Particulate Matter  Pm10  Location  Models  
Evaluating the Marginal Land Resources Suitable for Developing Bioenergy in Asia SCI/SSCI论文
2014
Authors:  Fu J. Y.;  Jiang D.;  Huang Y. H.;  Zhuang D. F.;  Ji W.
Adobe PDF(2344Kb)  |  Favorite  |  View/Download:183/77  |  Submit date:2014/12/24
Life-cycle Assessment  Jatropha-curcas  Biodiesel Production  Biofuel  Development  Energy-production  China  Ethanol  Sustainability  Cassava  Systems  
Evaluating the Marginal Land Resources Suitable for Developing Bioenergy in Asia 期刊论文
ADVANCES IN METEOROLOGY, 2014, 页码: -
Authors:  Fu, JingYing(付晶莹);  Jiang, D;  Huang, YH;  Zhuang, DF;  Ji, W
Adobe PDF(2341Kb)  |  Favorite  |  View/Download:178/82  |  Submit date:2014/05/14
Spatio-Temporal Variation of PM2.5 Concentrations and Their Relationship with Geographic and Socioeconomic Factors in China 期刊论文
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2014, 卷号: 11, 期号: 1, 页码: 173-186
Authors:  Lin, Gang;  Fu, Jingying(付晶莹);  Jiang, Dong;  Hu, Wensheng;  Dong, Donglin;  Huang, Yaohuan;  Zhao, Mingdong
View  |  Adobe PDF(1107Kb)  |  Favorite  |  View/Download:71/27  |  Submit date:2014/08/26
Pm2.5  Gdp  Population  Land Use Change  Geographically Weighted Regression  
Effective Key Parameter Determination for an Automatic Approach to Land Cover Classification Based on Multispectral Remote Sensing Imagery SCI/SSCI论文
2013
Authors:  Wang Y.;  Jiang D.;  Zhuang D. F.;  Huang Y. H.;  Wang W.;  Yu X. F.
Adobe PDF(1675Kb)  |  Favorite  |  View/Download:53/24  |  Submit date:2014/12/24
Change-vector Analysis  Spatial-pattern  Tm Data  Agreement  Identification  Landscape  Accuracy  Database  Kappa  China  
A Simple Semi-Automatic Approach for Land Cover Classification from Multispectral Remote Sensing Imagery SCI/SSCI论文
2012
Authors:  Jiang D.;  Huang Y. H.;  Zhuang D. F.;  Zhu Y. Q.;  Xu X. L.;  Ren H. Y.
Adobe PDF(992Kb)  |  Favorite  |  View/Download:43/13  |  Submit date:2014/12/25
Components  Agreement  China  
Assessment of bioenergy potential on marginal land in China 期刊论文
Bioenergy developed from energy plants will play a more and more important role in future energy supply. Much attention has been paid to energy plants in recent years. As China has fairly limited cultivated land resources, the bioenergy development may mainly rely on the exploitation of marginal land. This study focused on the assessment of marginal land resources and bio-fuel potential in China using newly acquired data and Geographic Information System (GIS) techniques. A multi-factor analysis method was adopted to identify marginal lands for bioenergy development in China, with data of several main types of energy plants on the eco-environmental requirements and natural habits employed. A combined planting zonation strategy was proposed, which was targeted for five species of energy plants including Helianthus tuberous L. Pistacia chinensis. Jatropha curcas L., Cassava and Vernicia fordii. The results indicated that total area of marginal land exploitable for development of energy plants on a large scale was about 43.75 million ha. If 10% of this marginal land was fully utilized for growing the energy plants, the production of bio-fuel would be 13.39 million tons. (C) 2010 Elsevier Ltd. All rights reserved., 2011, 卷号: 15, 期号: 2, 页码: 1050-1056
Authors:  Zhuang, Dafang(庄大方);  Jiang, Dong;  Liu, Lei;  Huang, Yaohuan
Adobe PDF(644Kb)  |  Favorite  |  View/Download:477/196  |  Submit date:2011/06/10
Marginal Land  Bioenergy  Energy Plants  Gis  Remote Sensing