IGSNRR OpenIR

Browse/Search Results:  1-10 of 109 Help

Selected(0)Clear Items/Page:    Sort:
A GIS-Based Support Vector Machine Model for Flash Flood Vulnerability Assessment and Mapping in China 期刊论文
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 卷号: 8, 期号: 7, 页码: 23
Authors:  Xiong, Junnan;  Li, Jin;  Cheng, Weiming;  Wang, Nan;  Guo, Liang
Favorite  |  View/Download:1/0  |  Submit date:2019/09/24
GIS  flash flood vulnerability assessment  exposure  disaster reduction capability  SVM  China  
Integration of two semi-physical models of terrestrial evapotranspiration using the China Meteorological Forcing Dataset 期刊论文
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 卷号: 40, 期号: 5-6, 页码: 1966-1980
Authors:  Liu, Meng;  Tang, Ronglin;  Li, Zhao-Liang;  Yan, Guangjian
Favorite  |  View/Download:45/0  |  Submit date:2019/05/22
Retrieval of Daily PM2.5 Concentrations Using Nonlinear Methods: A Case Study of the Beijing-Tianjin-Hebei Region, China 期刊论文
REMOTE SENSING, 2018, 卷号: 10, 期号: 12, 页码: 17
Authors:  Li, Lijuan;  Chen, Baozhang;  Zhang, Yanhu;  Zhao, Youzheng;  Xian, Yue;  Xu, Guang;  Zhang, Huifang;  Guo, Lifeng
Favorite  |  View/Download:12/0  |  Submit date:2019/05/23
daily PM2  5concentrations  remote sensing  MODIS AOD  machine learning algorithm  spatial and temporal distribution  
Using multi-model ensembles of CMIP5 global climate models to reproduce observed monthly rainfall and temperature with machine learning methods in Australia 期刊论文
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2018, 卷号: 38, 期号: 13, 页码: 4891-4902
Authors:  Wang, Bin;  Zheng, Lihong;  Liu, De Li;  Ji, Fei;  Clark, Anthony;  Yu, Qiang
Favorite  |  View/Download:7/0  |  Submit date:2019/05/23
GCMs  machine learning  multi-model ensemble  random forest  support vector machine  
A Regionalized Study on the Spatial-Temporal Changes of Grassland Cover in the Three-River Headwaters Region from 2000 to 2016 期刊论文
SUSTAINABILITY, 2018, 卷号: 10, 期号: 10, 页码: 24
Authors:  Liu, Naijing;  Yang, Yaping;  Yao, Ling;  Yue, Xiafang
Favorite  |  View/Download:3/0  |  Submit date:2019/05/23
MOD44B  grassland cover  regionalization  Machine Learning  
Exploring the Factors Driving Changes in Farmland within the Tumen/Tuman River Basin 期刊论文
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2018, 卷号: 7, 期号: 9, 页码: 24
Authors:  Kang, Cholhyok;  Zhang, Yili;  Paudel, Basanta;  Liu, Linshan;  Wang, Zhaofeng;  Li, Ryongsu
Favorite  |  View/Download:6/0  |  Submit date:2019/05/23
farmland changes  driving forces  logistic regression  
Mapping Mangrove Forests Based on Multi-Tidal High-Resolution Satellite Imagery 期刊论文
REMOTE SENSING, 2018, 卷号: 10, 期号: 9, 页码: 20
Authors:  Xia, Qing;  Qin, Cheng-Zhi;  Li, He;  Huang, Chong;  Su, Fen-Zhen
Favorite  |  View/Download:18/0  |  Submit date:2019/05/23
mangrove forest mapping  high-resolution satellite imagery  tide  SVM classifier  spectral signature  
Projection of population structure in China using least squares support vector machine in conjunction with a Leslie matrix model 期刊论文
JOURNAL OF FORECASTING, 2018, 卷号: 37, 期号: 2, 页码: 225-234
Authors:  Li, Shuang;  Yang, Zewei;  Li, Hongsheng;  Shu, Guangwen
Favorite  |  View/Download:3/0  |  Submit date:2019/05/30
fertility rate  Leslie matrix model  ls-SVM  mortality rate  population structure  
Global Land Surface Evapotranspiration Estimation From Meteorological and Satellite Data Using the Support Vector Machine and Semiempirical Algorithm 期刊论文
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 卷号: 11, 期号: 2, 页码: 513-521
Authors:  Liu, Meng;  Tang, Ronglin;  Li, Zhao-Liang;  Yao, Yunjun;  Yan, Guangjian
Favorite  |  View/Download:5/0  |  Submit date:2019/05/30
Evapotranspiration (ET)  support vector machine (SVM)  
Mapping the spatial distribution of Aedes aegypti and Aedes albopictus 期刊论文
ACTA TROPICA, 2018, 卷号: 178, 页码: 155-162
Authors:  Ding, Fangyu;  Fu, Jingying;  Jiang, Dong;  Hao, Mengmeng;  Lin, Gang
Favorite  |  View/Download:2/0  |  Submit date:2019/05/30
Global distribution  Aedes aegypti  Aedes albopictus  Multidisciplinary datasets  Machine learning models