IGSNRR OpenIR

Browse/Search Results:  1-10 of 92 Help

Selected(0)Clear Items/Page:    Sort:
Estimating grassland aboveground biomass on the Tibetan Plateau using a random forest algorithm 期刊论文
ECOLOGICAL INDICATORS, 2019, 卷号: 102, 页码: 479-487
Authors:  Zeng, Na;  Ren, Xiaoli;  He, Honglin;  Zhang, Li;  Zhao, Dan;  Ge, Rong;  Li, Pan;  Niu, Zhongen
Favorite  |  View/Download:3/0  |  Submit date:2019/09/24
Aboveground biomass (AGB)  The Tibetan Plateau  Random Forest (RF)  Mean annual temperature (MAT)  Mean annual precipitation (MAP)  
Changes in quantity, quality, and pattern of farmland in a rapidly developing region of China: a case study of the Ningbo region 期刊论文
LANDSCAPE AND ECOLOGICAL ENGINEERING, 2019, 卷号: 15, 期号: 3, 页码: 323-336
Authors:  Zhang, Chao;  Wang, Xue;  Liu, Yujie
Favorite  |  View/Download:9/0  |  Submit date:2019/09/24
Land use change  Land quality  Landscape pattern  Farmland protection policy  China  
An Improved Multi-temporal and Multi-feature Tea Plantation Identification Method Using Sentinel-2 Imagery 期刊论文
SENSORS, 2019, 卷号: 19, 期号: 9, 页码: 16
Authors:  Zhu, Jun;  Pan, Ziwu;  Wang, Hang;  Huang, Peijie;  Sun, Jiulin;  Qin, Fen;  Liu, Zhenzhen
Favorite  |  View/Download:1/0  |  Submit date:2019/09/24
remote sensing  Sentinel-2  tea plantation identification  Random Forest algorithm  feature selection  China  
Identification of the Debris Flow Process Types within Catchments of Beijing Mountainous Area 期刊论文
WATER, 2019, 卷号: 11, 期号: 4, 页码: 26
Authors:  Wang, Nan;  Cheng, Weiming;  Zhao, Min;  Liu, Qiangyi;  Wang, Jing
Favorite  |  View/Download:1/0  |  Submit date:2019/09/24
debris flow process  machinelearning  catchment  Beijing mountainous area  
Land Use Change in Coastal Cities during the Rapid Urbanization Period from 1990 to 2016: A Case Study in Ningbo City, China 期刊论文
SUSTAINABILITY, 2019, 卷号: 11, 期号: 7, 页码: 21
Authors:  Zhang, Chao;  Zhong, Shuai;  Wang, Xue;  Shen, Lei;  Liu, Litao;  Liu, Yujie
Favorite  |  View/Download:1/0  |  Submit date:2019/09/24
land use change  transition matrix  spatial dynamic  random forest  Ningbo city  
Using Social Media to Mine and Analyze Public Sentiment during a Disaster: A Case Study of the 2018 Shouguang City Flood in China 期刊论文
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 卷号: 8, 期号: 4, 页码: 16
Authors:  Han, Xuehua;  Wang, Juanle
Favorite  |  View/Download:1/0  |  Submit date:2019/09/24
social media  flood  public sentiment  disaster risk reduction  China  
Simulating Spatio-Temporal Patterns of Terrorism Incidents on the Indochina Peninsula with GIS and the Random Forest Method 期刊论文
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 卷号: 8, 期号: 3, 页码: 19
Authors:  Hao, Mengmeng;  Jiang, Dong;  Ding, Fangyu;  Fu, Jingying;  Chen, Shuai
Favorite  |  View/Download:26/0  |  Submit date:2019/05/22
terrorism incidents  spatio-temporal patterns  Geo-information system  RF Algorithm  Indochina Peninsula  
Downscaling Land Surface Temperatures Using a Random Forest Regression Model With Multitype Predictor Variables 期刊论文
IEEE ACCESS, 2019, 卷号: 7, 页码: 21904-21916
Authors:  Wu, Hua;  Li, Wan
Favorite  |  View/Download:14/0  |  Submit date:2019/05/22
Land surface temperature  downscaling  random forest  thermal remote sensing  thermal sharpening  robustness  
Using multi-model ensembles of CMIP5 global climate models to reproduce observed monthly rainfall and temperature with machine learning methods in Australia 期刊论文
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2018, 卷号: 38, 期号: 13, 页码: 4891-4902
Authors:  Wang, Bin;  Zheng, Lihong;  Liu, De Li;  Ji, Fei;  Clark, Anthony;  Yu, Qiang
Favorite  |  View/Download:7/0  |  Submit date:2019/05/23
GCMs  machine learning  multi-model ensemble  random forest  support vector machine  
Reconstruction of terrestrial water storage anomalies in Northwest China during 1948-2002 using GRACE and GLDAS products 期刊论文
HYDROLOGY RESEARCH, 2018, 卷号: 49, 期号: 5, 页码: 1594-1607
Authors:  Yang, Peng;  Xia, Jun;  Zhan, Chesheng;  Wang, Tiejun
Favorite  |  View/Download:10/0  |  Submit date:2019/05/23
GRACE  Northwest China  reconstruction  SST  terrestrial water storage anomalies