IGSNRR OpenIR

Browse/Search Results:  1-10 of 1958 Help

Selected(0)Clear Items/Page:    Sort:
A quantitative model to simulate the vertical errors of SRTM3 DEM V4 data at the pixel level in the Shanbei Plateau of China 期刊论文
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 卷号: 41, 期号: 14, 页码: 5257-5276
Authors:  Zhao, Shangmin;  Zhao, Hengyang;  Li, Rongping;  Cheng, Weiming;  Zhou, Chenghu
Favorite  |  View/Download:25/0  |  Submit date:2020/05/19
Soil erosion topographic factor (LS): Accuracy calculated from different data sources 期刊论文
CATENA, 2020, 卷号: 187, 页码: 12
Authors:  Lu, Shaojuan;  Liu, Baoyuan;  Hu, Yaxian;  Fu, Suhua;  Cao, Qi;  Shi, Yandong;  Huang, Tingting
Favorite  |  View/Download:6/0  |  Submit date:2020/05/19
DEM  LS factor  Computation error  Topographic data source  
Nitrogen storage and allocation in China's forest ecosystems 期刊论文
SCIENCE CHINA-EARTH SCIENCES, 2020, 页码: 10
Authors:  Xu, Li;  He, Nianpeng
Favorite  |  View/Download:6/0  |  Submit date:2020/05/19
Forest  Nitrogen cycling  Nitrogen storage  Allocation  Climate  Soil nutrient  Soil texture  
Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI 期刊论文
SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 卷号: 707, 页码: 11
Authors:  Wang, Jingzhe;  Ding, Jianli;  Yu, Danlin;  Teng, Dexiong;  He, Bin;  Chen, Xiangyue;  Ge, Xiangyu;  Zhang, Zipeng;  Wang, Yi;  Yang, Xiaodong;  Shi, Tiezhu;  Su, Fenzhen
Favorite  |  View/Download:6/0  |  Submit date:2020/05/19
Soil salinization  Sentinel-2 MSI  Landsat-8 OLI  Cubist  Remote sensing  Surface soil moisture  
A two-level nested model for extracting positive and negative terrains combining morphology and visualization indicators 期刊论文
ECOLOGICAL INDICATORS, 2020, 卷号: 109, 页码: 14
Authors:  Li, Jingxin;  Zhang, Hongqi;  Xu, Erqi
Favorite  |  View/Download:6/0  |  Submit date:2020/05/19
Positive and negative terrains  Visualization indicators  Two-level nested model  Optimum threshold selection  Accuracy assessment  Slope land  
A Robust Deep Learning Approach for Spatiotemporal Estimation of Satellite AOD and PM2.5 期刊论文
REMOTE SENSING, 2020, 卷号: 12, 期号: 2, 页码: 27
Authors:  Li, Lianfa
Favorite  |  View/Download:6/0  |  Submit date:2020/05/19
PM2.5  satellite AOD  deep learning  autoencoder  residual network  exposure estimation  high spatiotemporal resolution  
Assessment of Urban Heat Risk in Mountain Environments: A Case Study of Chongqing Metropolitan Area, China 期刊论文
SUSTAINABILITY, 2020, 卷号: 12, 期号: 1, 页码: 15
Authors:  Chen, Dechao;  Xu, Xinliang;  Sun, Zongyao;  Liu, Luo;  Qiao, Zhi;  Huang, Tai
Favorite  |  View/Download:6/0  |  Submit date:2020/05/19
urban heat environment risk  spatio-temporal pattern  land surface temperature  land use  CA-Markov model  Chongqing metropolitan area  
Assessment of Three Common Methods for Estimating Terrestrial Water Storage Change with Three Reanalysis Datasets 期刊论文
JOURNAL OF CLIMATE, 2020, 卷号: 33, 期号: 2, 页码: 511-525
Authors:  Deng, Shanshan;  Liu, Suxia;  Mo, Xingguo
Favorite  |  View/Download:9/0  |  Submit date:2020/05/19
Hydrology  Water budget  balance  
Sea Surface-Visible Aquaculture Spatial-Temporal Distribution Remote Sensing: A Case Study in Liaoning Province, China from 2000 to 2018 期刊论文
SUSTAINABILITY, 2019, 卷号: 11, 期号: 24, 页码: 23
Authors:  Kang, Junmei;  Sui, Lichun;  Yang, Xiaomei;  Liu, Yueming;  Wang, Zhihua;  Wang, Jun;  Yang, Fengshuo;  Liu, Bin;  Ma, Yuanzheng
Favorite  |  View/Download:7/0  |  Submit date:2020/05/19
remote sensing  marine aquaculture  spatial distribution  dynamic monitoring  Liaoning Province  
Application of sandwich spatial estimation method in cancer mapping: A case study for breast cancer mortality in the Chinese mainland, 2005 期刊论文
STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 卷号: 28, 期号: 12, 页码: 3609-3626
Authors:  Liao, Yilan;  Li, Dongyue;  Zhang, Ningxu;  Xia, Changfa;  Zheng, Rongshou;  Zeng, Hongmei;  Zhang, Siwei;  Wang, Jinfeng;  Chen, Wanqing
Favorite  |  View/Download:23/0  |  Submit date:2020/03/23
Sandwich estimation  Bayesian  cancer mortality  spatial distribution  mapping