地理资源所机构知识库

Browse/Search Results:  1-5 of 5 Help

Selected(0)Clear Items/Page:    Sort:
Predicting the risk of arsenic accumulation in soil-rice system in Asian monsoon region 期刊论文
SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 卷号: 952, 页码: 175896
Authors:  Ban, Ruxin;  Yang, Linsheng;  Yu, Jiangping;  Wei, Binggan;  Yin, Shuhui
Adobe PDF(10473Kb)  |  Favorite  |  View/Download:37/10  |  Submit date:2024/10/21
Arsenic  Rice  Bioaccumulation factor  Machine learning  Asian monsoon region  
Developing novel ensemble models for predicting soil hydraulic properties in China's arid region 期刊论文
JOURNAL OF HYDROLOGY, 2024, 卷号: 636, 页码: 131354
Authors:  Niu, Liantao;  Jia, Xiaoxu;  Li, Xiangdong;  Zhao, Chunlei;  Ren, Lidong;  Hu, Wei;  Zhu, Ping;  Li, Danfeng;  Zhang, Baoqing;  Shao, Ming'an
Adobe PDF(7863Kb)  |  Favorite  |  View/Download:61/7  |  Submit date:2024/09/19
Pedotransfer functions  Soil hydraulic properties  Machine learning  Ensemble model  Arid region  
Comparative Study of Convolutional Neural Network and Conventional Machine Learning Methods for Landslide Susceptibility Mapping 期刊论文
REMOTE SENSING, 2022, 卷号: 14, 期号: 2, 页码: 31
Authors:  Liu, Rui;  Yang, Xin;  Xu, Chong;  Wei, Liangshuai;  Zeng, Xiangqiang
Favorite  |  View/Download:68/0  |  Submit date:2022/09/21
landslide susceptibility mapping  convolutional neural network  machine learning  GIS  Jiuzhaigou region  Lantau Island  
An Improved Deep Learning Approach for Retrieving Outfalls Into Rivers From UAS Imagery 期刊论文
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 页码: 14
Authors:  Huang, Yaohuan;  Wu, Chengbin;  Yang, Haijun;  Zhu, Haitao;  Chen, Mingxing;  Yang, Jie
Favorite  |  View/Download:85/0  |  Submit date:2022/09/21
Rivers  Visualization  Remote sensing  Manuals  Inspection  Water resources  Task analysis  Deep learning  digital surface model (DSM)  faster region convolutional neural network (R-CNN)  outfalls into river  unmanned aircraft systems (UAS) imagery  
Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis SCI/SSCI论文
Scientometrics,2015,卷:103,期:1,页:135-158
Authors:  Liu Z. G.;  Yin, Y. M.;  Liu, W. D.;  Dunford, M.
Adobe PDF(2046Kb)  |  Favorite  |  View/Download:1027/682  |  Submit date:2015/12/09
Innovation Systems  Scientific Visualization  Cityscape  Intellectual  Development  Bibliometrics  Author Cocitation Analysis  International Scientific Collaboration  Renewable Energy Technology  Co-word Analysis  Citation Analysis  National Systems  Emerging Trends  Knowledge Bases  Learning Region  Science  
  • first
  • previous
  • 1
  • next
  • last