IGSNRR OpenIR
基于SOFM神经网络模型的土地类型分区尝试--以青藏高原东部样带为例
张学儒; 张镱锂; 刘林山; 张继平
2013
Source Publication地理研究
ISSN1000-0585
Volume32Issue:5Pages:839
Abstract基于土地类型自下而上的自然区划能够确立更加清晰的自然区划界线,是自然区划研究取得突破的关键。以青藏高原东部山区为研究区,采用神经网络模型与GIS技术,开展基于土地类型自下而上的区划研究。通过计算得到研究区地形综合指数、温暖指数、湿润指数、地被指数和水文指数5个自然指数指标,并将这些指标作为变量输入层,输入到建立的Self-Organizing Feature Maps神经网络模型中,对土地类型单元自下而上合并,生成青藏高原东部山区自然区划图,实现以土地类型单元为控制本底的定量化分区。结果表明:①可以将土地类型单元聚合成高原高寒稀疏植被区、高原高寒草甸草原区、高原高寒灌丛草甸区、高山深谷灌丛草甸区和高山深谷针叶林区5个自然带区域。②分区结果与中国生态地理区域划分的自然界线比较接近,相似性较高,分区结果较理想。
Language英语
Document Type期刊论文
Identifierhttp://ir.igsnrr.ac.cn/handle/311030/76840
Collection中国科学院地理科学与资源研究所
Affiliation中国科学院地理科学与资源研究所
First Author Affilication中国科学院地理科学与资源研究所
Recommended Citation
GB/T 7714
张学儒,张镱锂,刘林山,等. 基于SOFM神经网络模型的土地类型分区尝试--以青藏高原东部样带为例[J]. 地理研究,2013,32(5):839.
APA 张学儒,张镱锂,刘林山,&张继平.(2013).基于SOFM神经网络模型的土地类型分区尝试--以青藏高原东部样带为例.地理研究,32(5),839.
MLA 张学儒,et al."基于SOFM神经网络模型的土地类型分区尝试--以青藏高原东部样带为例".地理研究 32.5(2013):839.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[张学儒]'s Articles
[张镱锂]'s Articles
[刘林山]'s Articles
Baidu academic
Similar articles in Baidu academic
[张学儒]'s Articles
[张镱锂]'s Articles
[刘林山]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[张学儒]'s Articles
[张镱锂]'s Articles
[刘林山]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.