IGSNRR OpenIR  > 研究生部
Study on classification methods of remote sensing image based on decision tree technology
Shen Wenming(申文民); Wu Guozeng; Sun Zhongping; Xiong Wencheng; Fu Zhuo; Xiao Rulin
会议名称2011 International Conference on Computer Science and Service System, CSSS 2011 - Proceedings ; 2011 International Conference on Computer Science and Service System, CSSS 2011 ; 2011 International Conference on Computer Science and Service System, CSSS 2011 - Proceedings ; 2011 International Conference on Computer Science and Service System, CSSS 2011
2011
会议名称2011 International Conference on Computer Science and Service System, CSSS 2011 - Proceedings ; 2011 International Conference on Computer Science and Service System, CSSS 2011 ; 2011 International Conference on Computer Science and Service System, CSSS 2011 - Proceedings ; 2011 International Conference on Computer Science and Service System, CSSS 2011
通讯作者Shen Wenming(申文民)
会议日期June 27, 2011 - June 29, 2011
会议地点Nanjing, China
出版地445 Hoes Lane - P.O.Box 1331, Piscataway, NJ 08855-1331, United States
出版者IEEE Computer Society
会议主办者Zhejiang University; Nanjing University; Nanjing University of Science and Technology; Shanghai Jiao Tong University; University of Science and Technology of China
摘要In order to improve and enforce environmental monitoring ability, especially in fields of large scale monitoring and dynamic monitoring, the Environmental Satellite will be launched in 2008 in China. Before the Satellite is launched, necessary pre-research work has to be done. Considering future ecological monitoring demand, we have paid more attention to land use/land cover classification method based on the Satellite's CCD sensor. In this article, we compared the decision tree classification technology with other classic automatic classification technologies using Landsat ETM+ image data and GIS data of Tangshan City in Hebei, China. The result of this study showed: accuracy of decision tree classification compared with the classic automatic classification technologies was improved by 18.29%, Kappa coefficient was increased about 0.1878; classification accuracy was improved about 19.52% when DEM and its derivative data were used as ancillary data in the mountainous area, Kappa coefficient was increased about 0.281; the classification accuracy was improved by 15.86% when the DN(Digital Number) values were converted to at-satellite reflectance values; tasseled cap transformation could cause classification accuracy to be reduced appreciably accompanied by compression of data amount.
关键词Computer Science Data Compression Decision Trees Engineering Research Image Reconstruction Measurement Theory Metadata Plant Extracts Reflection Remote Sensing Satellites Technology
收录类别EI
语种英语
文献类型会议论文
条目标识符http://ir.igsnrr.ac.cn/handle/311030/6550
专题研究生部
通讯作者Shen Wenming(申文民)
推荐引用方式
GB/T 7714
Shen Wenming,Wu Guozeng,Sun Zhongping,et al. Study on classification methods of remote sensing image based on decision tree technology[C]. 445 Hoes Lane - P.O.Box 1331, Piscataway, NJ 08855-1331, United States:IEEE Computer Society,2011.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
申文民(EI).pdf(438KB) 开放获取使用许可浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shen Wenming(申文民)]的文章
[Wu Guozeng]的文章
[Sun Zhongping]的文章
百度学术
百度学术中相似的文章
[Shen Wenming(申文民)]的文章
[Wu Guozeng]的文章
[Sun Zhongping]的文章
必应学术
必应学术中相似的文章
[Shen Wenming(申文民)]的文章
[Wu Guozeng]的文章
[Sun Zhongping]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 申文民(EI).pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。