IGSNRR OpenIR
Effect of rock fragment content on erosion processes of disturbed soil accumulation under field scouring conditions
Niu, Yaobin1; Gao, Zhaoliang1,2; Li, Yonghong3; Luo, Ke4
2019-04-01
Source PublicationJOURNAL OF SOILS AND SEDIMENTS
ISSN1439-0108
Volume19Issue:4Pages:1708-1723
Corresponding AuthorGao, Zhaoliang(gzl@ms.iswc.ac.cn)
AbstractPurpose Soil and water erosion from high rock fragment content disturbed soil accumulation severely threatens ecological security. Evaluation of the quantitative influence of rock fragment content on soil erosion processes was the basic research for soil and water conservation. Materials and methods Field simulation scouring experiments were conducted on the disturbed soil accumulation experimental plot. A 10x1-m(2) plot with 28 gradients was established on Changwu Experimental Station in the Loess Plateau, China. Tap water was applied at the top of the plot with the four different flow discharge rates of 1.3x10(-4), 1.7x10(-4), 2.1x10(-4) and 2.5x10(-4)m(3)s(-1) to simulate surface runoff processes. The experimental plots underlying surfaces were filled with different rock fragment content of 20%, 40% and 0%. The soil used in these experimental plots was a silty loam from the disturbed soil accumulation formed by expressway construction in the loess plateau areas. The disturbed soil accumulation site was located near the G70 Fujian-Yinchuan expressway and the vegetation cover was very low. The mean diameter of rock fragments was 22 mm in these experiments, and the rock fragments were unsmooth, angular crushed stone taken from the quarry in the Changwu County. Results and discussion The results showed that rock fragment content of 20% and 40% could significantly decreased runoff and sediment (P<0.05), although there was no significantly different between 20 and 40%. The rock fragments decreased mean flow velocity by 43 to 55% in mean flow velocity compared to the pure soil. Furthermore, the flow was laminar flow in the rock fragments slope. The rock fragments significantly decreased flow shear stress (52-89%), stream power (63-89%), unit stream power (41-59%), runoff kinetic energy (67-88%) and unit energy of the water-carrying section (81-89%) compared with the pure soil. With increased rock fragment content, the rill erodibility decreased. The rill erodibility was estimated to be 1.4x10(-3)sm(-1), 0.7x10(-3)sm(-1) and 0.5x10(-3)sm(-1), under the condition of pure soil, rock fragment content of 20% and 40%, respectively. Conclusions Low rock fragment content (<40%) in disturbed soil accumulation significantly decreased runoff and sediment. With the rock fragment content increased, the rill erodibility was decreased. Appropriate rock fragment content could be used to control soil erosion on disturbed soil accumulation in practice. The important parameters from this study will be helpful for disturbed soil accumulation erosion prediction model establishment.
KeywordDisturbed soil accumulation Erosion process Hydraulic characteristics Production and construction projects Rock fragment content
DOI10.1007/s11368-018-2200-3
WOS KeywordCONCENTRATED FLOW EROSION ; RUNOFF ; WATER ; CONSTRUCTION ; DYNAMICS ; OVERLAND ; RATES ; INFILTRATION ; SURFACES ; VELOCITY
Indexed BySCI
Language英语
Funding ProjectNational Natural Science Foundation of China[41671283] ; State Key Development Programme for Basic Research of China[2016YFC0501706-02]
Funding OrganizationNational Natural Science Foundation of China ; State Key Development Programme for Basic Research of China
WOS Research AreaEnvironmental Sciences & Ecology ; Agriculture
WOS SubjectEnvironmental Sciences ; Soil Science
WOS IDWOS:000462500000010
PublisherSPRINGER HEIDELBERG
Citation statistics
Document Type期刊论文
Identifierhttp://ir.igsnrr.ac.cn/handle/311030/48678
Collection中国科学院地理科学与资源研究所
Corresponding AuthorGao, Zhaoliang
Affiliation1.Northwest A&F Univ, Inst Soil & Water Conservat, Yangling 712100, Shaanxi, Peoples R China
2.Chinese Acad Sci & Minist Water Resources, Inst Soil & Water Conservat, Yangling 712100, Shaanxi, Peoples R China
3.Northwest A&F Univ, Coll Water Resources & Architectural Engn, Yangling 712100, Shaanxi, Peoples R China
4.Soil & Water Conservat Control Bur, Jin Shan Meng Adjacent Area, YRCC, Yulin 719000, Shaanxi, Peoples R China
Recommended Citation
GB/T 7714
Niu, Yaobin,Gao, Zhaoliang,Li, Yonghong,et al. Effect of rock fragment content on erosion processes of disturbed soil accumulation under field scouring conditions[J]. JOURNAL OF SOILS AND SEDIMENTS,2019,19(4):1708-1723.
APA Niu, Yaobin,Gao, Zhaoliang,Li, Yonghong,&Luo, Ke.(2019).Effect of rock fragment content on erosion processes of disturbed soil accumulation under field scouring conditions.JOURNAL OF SOILS AND SEDIMENTS,19(4),1708-1723.
MLA Niu, Yaobin,et al."Effect of rock fragment content on erosion processes of disturbed soil accumulation under field scouring conditions".JOURNAL OF SOILS AND SEDIMENTS 19.4(2019):1708-1723.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Niu, Yaobin]'s Articles
[Gao, Zhaoliang]'s Articles
[Li, Yonghong]'s Articles
Baidu academic
Similar articles in Baidu academic
[Niu, Yaobin]'s Articles
[Gao, Zhaoliang]'s Articles
[Li, Yonghong]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Niu, Yaobin]'s Articles
[Gao, Zhaoliang]'s Articles
[Li, Yonghong]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.