Contrasting effects of ammonium and nitrate additions on the biomass of soil microbial communities and enzyme activities in subtropical China
Zhang, C; Zhang, XY; Zou, HT; Kou, L; Yang, Y; Wen, XF; Li, SG; Wang, HM; Sun, XM
2017
Source PublicationBIOGEOSCIENCES
ISSN1726-4170
Volume14Issue:20Pages:4815-4827
AbstractThe nitrate to ammonium ratios in nitrogen (N) compounds in wet atmospheric deposits have increased over the recent past, which is a cause for some concern as the individual effects of nitrate and ammonium deposition on the biomass of different soil microbial communities and enzyme activities are still poorly defined. We established a field experiment and applied ammonium (NH4Cl) and nitrate (NaNO3) at monthly intervals over a period of 4 years. We collected soil samples from the ammonium and nitrate treatments and control plots in three different seasons, namely spring, summer, and fall, to evaluate the how the biomass of different soil microbial communities and enzyme activities responded to the ammonium (NH4Cl) and nitrate (NaNO3) applications. Our results showed that the total contents of phospholipid fatty acids (PLFAs) decreased by 24 and 11% in the ammonium and nitrate treatments, respectively. The inhibitory effects of ammonium on Gram-positive bacteria (G(+)) and bacteria, fungi, actinomycetes, and arbuscular mycorrhizal fungi (AMF) PLFA contents ranged from 14 to 40% across the three seasons. We also observed that the absolute activities of C, N, and P hydrolyses and oxidases were inhibited by ammonium and nitrate, but that nitrate had stronger inhibitory effects on the activities of acid phosphatase (AP) than ammonium. The activities of N-acquisition specific enzymes (enzyme activities normalized by total PLFA contents) were about 21 and 43% lower in the ammonium and nitrate treatments than in the control, respectively. However, the activities of P-acquisition specific enzymes were about 19% higher in the ammonium treatment than in the control. Using redundancy analysis (RDA), we found that the measured C, N, and P hydrolysis and polyphenol oxidase (PPO) activities were positively correlated with the soil pH and ammonium contents, but were negatively correlated with the nitrate contents. The PLFA biomarker contents were positively correlated with soil pH, soil organic carbon (SOC), and total N contents, but were negatively correlated with the ammonium contents. The soil enzyme activities varied seasonally, and were highest in March and lowest in October. In contrast, the contents of the microbial PLFA biomarkers were higher in October than in March and June. Ammonium may inhibit the contents of PLFA biomarkers more strongly than nitrate because of acidification. This study has provided useful information about the effects of ammonium and nitrate on soil microbial communities and enzyme activities.
SubtypeJournal
Subject AreaEnvironmental Sciences & Ecology ; Geology
WOS Subject ExtendedEcology ; Geosciences, Multidisciplinary
WOS KeywordNITROGEN-FERTILIZATION ; FOREST SOIL ; TERRESTRIAL ECOSYSTEMS ; N DEPOSITION ; LITTER ; METAANALYSIS ; RESPONSES ; DECAY ; CARBON ; INPUTS
Indexed BySCI
Language英语
WOS IDWOS:000413856500001
PublisherCOPERNICUS GESELLSCHAFT MBH
Citation statistics
Document Type期刊论文
Identifierhttp://ir.igsnrr.ac.cn/handle/311030/43990
Collection生态系统网络观测与模拟院重点实验室_生态网络实验室
Recommended Citation
GB/T 7714
Zhang, C,Zhang, XY,Zou, HT,et al. Contrasting effects of ammonium and nitrate additions on the biomass of soil microbial communities and enzyme activities in subtropical China[J]. BIOGEOSCIENCES,2017,14(20):4815-4827.
APA Zhang, C.,Zhang, XY.,Zou, HT.,Kou, L.,Yang, Y.,...&Sun, XM.(2017).Contrasting effects of ammonium and nitrate additions on the biomass of soil microbial communities and enzyme activities in subtropical China.BIOGEOSCIENCES,14(20),4815-4827.
MLA Zhang, C,et al."Contrasting effects of ammonium and nitrate additions on the biomass of soil microbial communities and enzyme activities in subtropical China".BIOGEOSCIENCES 14.20(2017):4815-4827.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Zhang, C]'s Articles
[Zhang, XY]'s Articles
[Zou, HT]'s Articles
Baidu academic
Similar articles in Baidu academic
[Zhang, C]'s Articles
[Zhang, XY]'s Articles
[Zou, HT]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Zhang, C]'s Articles
[Zhang, XY]'s Articles
[Zou, HT]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.