IGSNRR OpenIR  > 历年回溯文献
Multimodel ensembles of wheat growth: many models are better than one
Martre P.; Wallach, D.; Asseng, S.; Ewert, F.; Jones, J. W.; Rotter, R. P.; Boote, K. J.; Ruane, A. C.; Thorburn, P. J.; Cammarano, D.; Hatfield, J. L.; Rosenzweig, C.; Aggarwal, P. K.; Angulo, C.; Basso, B.; Bertuzzi, P.; Biernath, C.; Brisson, N.; Challinor, A. J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R. F.; Heng, L.; Hooker, J.; Hunt, L. A.; Ingwersen, J.; Izaurralde, R. C.; Kersebaum, K. C.; Muller, C.; Kumar, S. N.; Nendel, C.; O'leary, G.; Olesen, J. E.; Osborne, T. M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M. A.; Shcherbak, I.; Steduto, P.; Stockle, C. O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F. L.; Travasso, M.; Waha, K.; White, J. W.; Wolf, J.
出处Global Change Biology
2015
21
2
911-925
关键词Ecophysiological Model Ensemble Modeling Model Intercomparison Process-based Model Uncertainty Wheat (Triticum Aestivum L.) Climate-change Crop Production Impacts Yield Simulations Calibration Australia Billion Europe Grain
英文摘要Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24-38% for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.
收录类别SCI
语种英语
ISSN号1354-1013
DOI标识10.1111/gcb.12768
引用统计
被引频次:116[WOS]   [WOS记录]     [WOS相关记录]
文献类型SCI/SSCI论文
条目标识符http://ir.igsnrr.ac.cn/handle/311030/38779
专题历年回溯文献
推荐引用方式
GB/T 7714
Martre P.,Wallach, D.,Asseng, S.,et al. Multimodel ensembles of wheat growth: many models are better than one. 2015.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Martre-2015-Multimod(468KB) 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Martre P.]的文章
[Wallach, D.]的文章
[Asseng, S.]的文章
百度学术
百度学术中相似的文章
[Martre P.]的文章
[Wallach, D.]的文章
[Asseng, S.]的文章
必应学术
必应学术中相似的文章
[Martre P.]的文章
[Wallach, D.]的文章
[Asseng, S.]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Martre-2015-Multimodel ensembles.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。