IGSNRR OpenIR  > 历年回溯文献
Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions
Li T.; Hasegawa, T.; Yin, X. Y.; Zhu, Y.; Boote, K.; Adam, M.; Bregaglio, S.; Buis, S.; Confalonieri, R.; Fumoto, T.; Gaydon, D.; Marcaida, M.; Nakagawa, H.; Oriol, P.; Ruane, A. C.; Ruget, F.; Singh, B.; Singh, U.; Tang, L.; Tao, F. L.; Wilkens, P.; Yoshida, H.; Zhang, Z.; Bouman, B.
出处Global Change Biology
2015
21
3
1328-1341
关键词Agmip Climate Change Crop-model Ensembles Oryza Sativa Yield Prediction Uncertainty Air Co2 Enrichment High-temperature Stress Elevated Co2 Spikelet Fertility Night Temperature Carbon-dioxide Growth Sterility Face Productivity
英文摘要Predicting rice (Oryza sativa) productivity under future climates is important for global food security. Ecophysiological crop models in combination with climate model outputs are commonly used in yield prediction, but uncertainties associated with crop models remain largely unquantified. We evaluated 13 rice models against multi-year experimental yield data at four sites with diverse climatic conditions in Asia and examined whether different modeling approaches on major physiological processes attribute to the uncertainties of prediction to field measured yields and to the uncertainties of sensitivity to changes in temperature and CO2 concentration [CO2]. We also examined whether a use of an ensemble of crop models can reduce the uncertainties. Individual models did not consistently reproduce both experimental and regional yields well, and uncertainty was larger at the warmest and coolest sites. The variation in yield projections was larger among crop models than variation resulting from 16 global climate model-based scenarios. However, the mean of predictions of all crop models reproduced experimental data, with an uncertainty of less than 10% of measured yields. Using an ensemble of eight models calibrated only for phenology or five models calibrated in detail resulted in the uncertainty equivalent to that of the measured yield in well-controlled agronomic field experiments. Sensitivity analysis indicates the necessity to improve the accuracy in predicting both biomass and harvest index in response to increasing [CO2] and temperature.
收录类别SCI
语种英语
ISSN号1354-1013
DOI标识10.1111/gcb.12758
引用统计
被引频次:95[WOS]   [WOS记录]     [WOS相关记录]
文献类型SCI/SSCI论文
条目标识符http://ir.igsnrr.ac.cn/handle/311030/38723
专题历年回溯文献
推荐引用方式
GB/T 7714
Li T.,Hasegawa, T.,Yin, X. Y.,et al. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. 2015.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Li-2015-Uncertaintie(680KB) 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li T.]的文章
[Hasegawa, T.]的文章
[Yin, X. Y.]的文章
百度学术
百度学术中相似的文章
[Li T.]的文章
[Hasegawa, T.]的文章
[Yin, X. Y.]的文章
必应学术
必应学术中相似的文章
[Li T.]的文章
[Hasegawa, T.]的文章
[Yin, X. Y.]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Li-2015-Uncertainties in pre.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。