IGSNRR OpenIR
estimationofdailyvaporpressuredeficitusingmodispotentialevapotranspirationonthetibetanplateau
Shen Zhenxi; Sun Wei; Li Shaowei; Zhang Haorui; Fu Gang; Yu Chengqun; Zhang Guangyu
2018
Source Publicationjournalofresourcesandecology
ISSN1674-764X
Volume009Issue:005Pages:538
Abstract饱和水汽压亏缺是一个非常重要的模拟水循环和植被生产力的参数。青藏高原上的气象站比较稀少,这限制了饱和水汽压亏缺的精确估计。中分辨率成像光谱仪提供了蒸散数据,这为模拟饱和水汽压亏缺提供了可能。尽管如此,在青藏高原上,还没有研究利用中分辨率成像光谱仪的蒸散数据模拟饱和水汽压亏缺。因此,本研究利用中分辨率成像光谱仪的潜在蒸散数据模拟了高寒草甸、高寒草原、农田、森林和灌木2000-2012年四季的饱和水汽压亏缺。春季的均方根误差和平均绝对误差分别是0.95–2.34 hPa和0.72–1.54 hPa,夏季的的均方根误差和平均绝对误差分别是1.39–2.60 hPa和0.89–1.96 hPa,秋季的均方根误差和平均绝对误差分别是0.78–1.93 hPa和0.56–1.36 hPa,冬季的均方根误差和平均绝对误差分别是0.48–1.40 hPa和0.36–0.98 hPa。高寒草原的均方根误差和平均绝对误差分别是0.48–1.39 hPa和0.36–1.00 hPa,高寒草甸的均方根误差和平均绝对误差分别是0.58–1.39 hPa和0.44–0.90 hPa,农田的均方根误差和平均绝对误差分别是1.10–2.55 hPa和0.82–1.74 hPa,灌木的均方根误差和平均绝对误差分别是0.98–1.90 hPa和0.78–1.37 hPa,森林的分别是1.40–2.60 hPa和0.98–1.96 hPa。因此,中分辨率成像光谱仪的潜在蒸散数据可以用来模拟青藏高原的饱和水汽压亏缺,且需要考虑整合植被类型和季节。
Language英语
Document Type期刊论文
Identifierhttp://ir.igsnrr.ac.cn/handle/311030/124132
Collection中国科学院地理科学与资源研究所
Affiliation中国科学院地理科学与资源研究所
First Author Affilication中国科学院地理科学与资源研究所
Recommended Citation
GB/T 7714
Shen Zhenxi,Sun Wei,Li Shaowei,et al. estimationofdailyvaporpressuredeficitusingmodispotentialevapotranspirationonthetibetanplateau[J]. journalofresourcesandecology,2018,009(005):538.
APA Shen Zhenxi.,Sun Wei.,Li Shaowei.,Zhang Haorui.,Fu Gang.,...&Zhang Guangyu.(2018).estimationofdailyvaporpressuredeficitusingmodispotentialevapotranspirationonthetibetanplateau.journalofresourcesandecology,009(005),538.
MLA Shen Zhenxi,et al."estimationofdailyvaporpressuredeficitusingmodispotentialevapotranspirationonthetibetanplateau".journalofresourcesandecology 009.005(2018):538.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Shen Zhenxi]'s Articles
[Sun Wei]'s Articles
[Li Shaowei]'s Articles
Baidu academic
Similar articles in Baidu academic
[Shen Zhenxi]'s Articles
[Sun Wei]'s Articles
[Li Shaowei]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Shen Zhenxi]'s Articles
[Sun Wei]'s Articles
[Li Shaowei]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.