IGSNRR OpenIR
基于数码照片的植被物候提取多方法比较研究
周玉科
2018
Source Publication地理科学进展
ISSN1007-6301
Volume037Issue:008Pages:1031
Abstract植被物候能反映植被生长状况及其对气候变化的响应,在景观或更小尺度上自动化观测分析植被物候的演化是对大尺度遥感分析和单株植物人工观测的有效补充。基于物候相机观测网络(PhenoCam)中3种典型植被类型(森林、草地和农作物)站点数据,首先在群落尺度的感兴趣区(region of interesting,ROI)和像素2个尺度上计算植被指数,然后利用多种曲线拟合植被生长轨迹,提取关键物候参数,最后对相机物候参数进行了不确定性分析和卫星遥感物候的比较验证。结果表明:自定义ROI区域可以精确划定植被聚集区域,减少天空、地面等非植被要素的干扰;多方法的生长曲线拟合实验表明双逻辑斯蒂拟合法比较适用于单生长期植被,样条法较适用于多生长期植被;单生长期植被可直接采用多种物候参数提取方法(Klosterman,Gu,TRS,Derivatives)从生长曲线上提取关键物候参数,而多生长期植被可先用样条法拟合生长轨迹,然后采用变化点方法提取关键物候参数;生长曲线拟合与物候参数提取组合方法的不确定性分析发现,Klosterman方法具有较好的鲁棒性,各组合方法模拟实验的均方根误差均小于0.005;相机物候参数与MODIS EVI提取的遥感物候参数对比验证表明,二者在森林、农作物上的物候参数比较一致;像素级返青期参数的探索性分析发现,在像素尺度上能够识别群落内物种及个体间的物候差异,未来经过更深入的不确定性分析后,可尝试作为自动化分析群落尺度生物多样性的方法。
Language英语
Document Type期刊论文
Identifierhttp://ir.igsnrr.ac.cn/handle/311030/107249
Collection中国科学院地理科学与资源研究所
Affiliation中国科学院地理科学与资源研究所
First Author Affilication中国科学院地理科学与资源研究所
Recommended Citation
GB/T 7714
周玉科. 基于数码照片的植被物候提取多方法比较研究[J]. 地理科学进展,2018,037(008):1031.
APA 周玉科.(2018).基于数码照片的植被物候提取多方法比较研究.地理科学进展,037(008),1031.
MLA 周玉科."基于数码照片的植被物候提取多方法比较研究".地理科学进展 037.008(2018):1031.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[周玉科]'s Articles
Baidu academic
Similar articles in Baidu academic
[周玉科]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[周玉科]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.