Pedogenesis significantly decreases the stability of water-dispersible soil colloids in a humid tropical region

Lai-Ming Huang, Xin-Hui Zhang, Ming-An Shao, David Rossiter, Gan-Lin Zhang

A R T I C L E I N F O

Article history:
Received 17 December 2015
Received in revised form 23 March 2016
Accepted 3 April 2016
Available online 12 April 2016

Keywords:
Soil development
Chronosequence
Mineral in clay
Colloid stability
Point of zero charge
ΔpH

A B S T R A C T

The stability of soil colloids influences soil physicochemical properties, soil development, and transfer of nutrients and contaminants to surface and ground waters. A better understanding of soil colloids stability dynamics during soil evolution is important for the evaluation of soil's capacity to retain nutrients and/or accommodate toxic contaminants. This study was aimed to determine changes in the stability of water-dispersible soil colloids that accompany mineral transformation and surface charge evolution during pedogenesis using a well-characterized chronosequence derived from basalt in the humid tropical region of Hainan Island, South China. The results demonstrated that the pH-dependent colloid stability decreased significantly with tropical soil development, which we attribute to the substantial changes in clay mineral compositions and colloid surface charge properties. Clay minerals in the studied chronosequence were characterized by an increase of kaolinite, gibbsite and Fe oxides and a decrease of quartz and halloysite towards more advanced stages of weathering, which resulted in the decline of permanent negative charges in the older soils. The point of zero charge (pH_{PZC}) increased while ΔpH decreased across the tropical soil chronosequence, being in good agreement with the observed lower colloid stability in aged soils dominated by kaolinitic minerals. Our study of colloid stability at long-term pedogenic timescale suggests young tropical soils (< 180 ka) with high surface charge are subjected to higher risk of clay movement and colloid-facilitated nutrients and contaminants transport. Careful management practices are thus required to avoid colloids dispersion and transport in young tropical soils either by reducing the frequency/intensity of pore-water flow or by liming to counter the high permanent negative charges.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Although small in size, soil colloid (ca. 1 nm–1 μm) often regulates the mobility of strongly sorbing constituents, including nutrients, contaminants, heavy metals, and even the assumed immobile elements (Buettner et al., 2014; Kretzschmar and Schafer, 2005; Thompson et al., 2006). This is attributed to the high specific surface areas (>10 m² g⁻¹) and high reactive activity of soil colloid particles (Klaine et al., 2008; Yariv and Cross, 2012). It is well known that colloids can be dispersed and transported by pore-water flow in soils, resulting in the concurrent mobilization and transfer of nutrient and/or toxic ions (Buettner et al., 2014; Mohanty et al., 2014; Zhang and Selim, 2007). The stability of soil colloids has been shown to control various physical and mechanical properties of soil, such as swelling, hydraulic conductivity, water infiltration, friability and modulus rupture (Levy et al., 1993; Shanmuganathan and Oades, 1982). In addition, the dispersion/flocculation behavior of soil colloids also influences soil crust formation (Southard et al., 1988), soil erodibility (Barthes and Roose, 2002; Le Bissonnais, 1996), and soil development (Anderson and Schaetzl, 2005). As a result, the stability of soil colloids has a far reaching significance for the biogeochemical cycling and ecosystem function in the Critical Zone.

Colloid stability is governed by the attractive (F_a) and repulsive (F_r) forces in the electrical double layer at the surface of charged colloid particles. The magnitude of F_a and F_r is controlled by the $ΔpH$ (i.e. the difference between the pH of the suspension and the pH_{PZC} of the colloids; pH_{PZC} is the pH at which the net charge on the colloid surface is zero) and the solution ionic strength (Goldberg et al., 1988; Norgaard et al., 2014; Seta and Karathanasis, 1996). When $ΔpH$ increases, F_r also increases, thus leading to colloid stability (dispersion). Increases in the ionic strength, however, suppress F_r values and promote colloids instability (flocculation). In addition to the above components, the stability of colloids is also influenced by the mineralogical composition of the colloid mixture (e.g. lgwe et al., 1999), organic matter content (e.g. Kretzschmar et al., 1995; Tarchitzky et al., 1993), the abundance of Fe and Al oxides (e.g. Goldberg et al., 1990; lgwe et al., 2009), and the type and amount of exchangeable cations (e.g. Levy and Torrento, 1995; Sequarís, 2010). These findings have significantly improved our understanding of the factors controlling colloid stability.
dispersion and the associated mobilization and transport of nutrients and contaminants in the natural environment.

Despite the well documented importance and mechanisms of soil colloid stability over the past several decades (e.g. Bolt et al., 1991; McCarthy and McKay, 2004; Mohanty et al., 2015), the relation between soil development time, as a major factor controlling pedogenesis, and colloid stability has received little attention. Previous studies have shown that the mineralogical types of soils change significantly with increased pedogenic time, including the gradual depletion of primary silicate minerals, transformation of poorly crystalline minerals to crystalline minerals, and accumulations of iron and aluminum (hydro)oxides (e.g. Boyle, 2007; Han et al., 2015; Mavris et al., 2011). Rates of mineral transformations in the highly weathered tropical soils are much faster than those of temperate regions due to the coincidence of abundant rainfall and high temperature. Mineral evolution during pedogenesis should be accompanied by measurable changes in the surface chemistry of soil colloids, which affects an array of biogeochemical processes including adsorption of nutrient and/or toxic ions, mineral weathering reactions, particle aggregation, and organic matter retention (Chorover et al., 2004). Thus a better understanding of soil colloids stability dynamics during soil evolution is important for the evaluation of soil’s capacity to retain nutrients and/or accommodate toxic contaminants.

The chronosequence approach has been extensively used in the study of temporal changes in soil properties during soil evolution (Huang et al., 2015; Huggett, 1998; Walker et al., 2010) and can provide a valuable tool for investigating colloid stability dynamics in the natural environment. In the present study, we selected a well characterized tropical soil chronosequence consist of six profiles ranging in age from 90 kilo annum (ka) to 2300 ka, developed on tholeiitic basalt in Hainan Island, South China (He et al., 2008; Huang and Gong, 2001; Jiang et al., 2011; Zhang et al., 2007), as a weathering sequence, and measured water-dispersible soil colloids and other physicochemical properties in the genetic horizons of each soil profile. The objectives of the present work were (i) to determine the dynamic changes in the stability of water-dispersible soil colloids at different stage of weathering; and (ii) to establish the relationships between pedogenic time, soil constituents and colloid stability to better understand the changing nature of colloid particles during long-term pedogenesis.

2. Materials and methods

2.1. Chronosequence field sites and soil sample collection

Hainan Island is the largest tropical island of China. It is located in the South China Sea, on the northern fringe of the tropical zone. The study was conducted in the northeast area of Hainan Island, which has a present mean annual precipitation of 1400–1800 mm and a mean annual temperature of 23–24 °C. This suggests a tropical monsoon climate with contrasting seasons. Soil samples were collected from six sites along a well characterized chronosequence developed on tholeiitic basalts ranging in age from 90 ka to 2300 ka (Table 1). Differences in basalt age provide a sequence in the intensity of chemical weathering. The younger rocks retain primary minerals and indicate rapid weathering rates, while soils in the older rocks are already deeply weathered and composed of secondary minerals which weather relatively slowly. Along the chronosequence, variations in “state factors” of soil formation other than time (i.e. climate, biota, relief, parent material) have been kept to a minimum so that the observed soil changes can be primarily interpreted in view of the time-scale or temporal changes. The chronosequence includes Primosols that eventually weather to form Ferralsols at advanced weathering stages (Table 1). Soil types classified by Chinese Soil Taxonomy (Gong et al., 2007) in Table 1 are equivalent to Entisols to Oxisols (Soil Survey Staff, 2003), or equivalent to Luvisols to Ferralsols (FAO, 2006) (Table 1). All soil profiles were selected on primary volcano surfaces, where physical erosion and groundwater

Table 1: Site descriptions and soil types along the chronosequence developed on basalts.

<table>
<thead>
<tr>
<th>Profile*</th>
<th>Sampling sites</th>
<th>Soil type</th>
<th>Soil type</th>
<th>Basalt Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>HB01</td>
<td>Yangpu, Danzhou</td>
<td>Primosols</td>
<td>Oxisols</td>
<td>90 ± 20</td>
</tr>
<tr>
<td>HB02</td>
<td>Ring highway, Qionghai</td>
<td>Cambisols</td>
<td>Cambisols</td>
<td>180 ± 8</td>
</tr>
<tr>
<td>HB03</td>
<td>Sanmenpo, Qionghai</td>
<td>Ferralsols</td>
<td>Ferralsols</td>
<td>600 ± 20</td>
</tr>
<tr>
<td>HB04</td>
<td>Sanjiang, Haikou</td>
<td>Ferralsols</td>
<td>Ferralsols</td>
<td>1120 ± 19</td>
</tr>
<tr>
<td>HB05</td>
<td>Xining, Danzhou</td>
<td>Ferralsols</td>
<td>Ferralsols</td>
<td>1810 ± 80</td>
</tr>
<tr>
<td>HB06</td>
<td>Jinjiang, Chengmai</td>
<td>Ferralsols</td>
<td>Ferralsols</td>
<td>2300 ± 25</td>
</tr>
</tbody>
</table>

* Soil profiles are renamed based on the plot of soil age.
* Chinese soil taxonomy (Gong et al., 2007).
* World soil reference base for soil resources (FAO, 2006).
* Keys to soil taxonomy (Soil Survey Staff, 2003).

influences were minimal. The interruption is not observed in the intergradations from basalt to soils and the selected soil profiles are in-situ weathering products developed continuously since the eruption of the basalt. Vegetations across the chronosequence were pristine, including grass, shrub, Acacia confuse, and Eucalyptus etc. Additional information on soil and ecosystem properties, and the reconstruction of the long-term geomorphologic/climatic history of the study sites could be found elsewhere (He et al., 2008; Huang and Gong, 2001; Jiang et al., 2011; Li et al., 2013; Zhang et al., 2007). Soils were excavated to at least a meter or to rock and the soil samples were collected by genetic horizons.

2.2. Analytical methods

2.2.1. Basic soil properties

Soil samples were air-dried, crushed using a wooden pestle and mortar, and then passed through a 2 mm nylon sieve. Soil pH was determined in a 1:2.5 soil:water solution. Routine chemical analyses for organic matter (OM) and cation exchange capacity (CEC) were based on standard techniques (ISSCAS, 1978). Free Fe oxides (Feo), poorly crystalline Fe oxides (Fei), and total elements were respectively extracted by the dithionite citrate bicarbonate (DCB), acidic ammonium oxalate and HF-HNO3-HClO4 (ISSCAS, 1978). The concentration of Fe in the extracted solution was measured by flame atomic absorption spectroscopy. Total elemental concentrations including K, Na, Ca, Mg, Al and Si in the solution were determined by inductively coupled plasma-optical emission spectrometry.

2.2.2. Clay mineralogy

Particle-size distribution in soils was determined by the pipette method (ISSCAS, 1978). The clay fraction (<2 μm) was obtained from the soil after buffering with Na-acetate (pH = 5) and oxidizing the organic matter with dilute H2O2 and by dispersion with Calgon and sedimentation in water. Duplicate 50-mg subsamples taken from each clay sample were subjected to remove Feo by DCB. One sample was saturated with a 1 mol l−1 MgCl2 solution, and the other sample was saturated with a 1 mol l−1 KCl solution. The Mg2+ and K+–saturated clays were analyzed by X-ray diffraction (XRD). In addition, the Mg2+–saturated slides were subsequently treated with glycerol and rescanned, while the K+–treated slides were subsequently heated to 300 and 550 °C and rescanned (Moore and Reynolds, 1997). Each slide was scanned between 3° and 30° 2θ, using a D8 ADVANCE X-ray diffractometer (Bruker AXS, Madison, WI) using Cu-Kα Ni-filtered X-rays, with the diffractometer operating at 40 kV and 40 mA. The Jade software (Materials Data Inc., Livermore, CA) was used for the calibration and analysis by comparing the given X-ray pattern with that of known minerals to identify the mineral composition. The relative amounts of the major silicate clay families were based on the differences in diffractogram patterns from the Mg2+–saturated, K+–saturated, and heated samples. Minerals
were identified based on their diagnostic XRD spacings (Brown and Brindley, 1980; Whittig and Allardice, 1986).

2.2.3. Determination of the point of zero charge

The illuvial B horizon with maximum clay content in each of six profiles along the soil chronosequence was chose for the determination of surface charge property and colloid stability for the following reasons: (i) B horizon is considered as the most reliable indicator of pedogenetic weathering and the properties of B horizon reflect the changing process of the soils with developing time (Schaetzl and Anderson, 2005); (ii) B horizon, serving as the bridge of upper (A) and lower (C) horizons, performs much of the filtering role in the environmental chemistry and is widely used for soil classification (Soil Survey Staff, 2003; FAO, 2006; Gong et al., 2007); (iii) A comparison of these clay-enriched B horizons across the well characterized chronosequence could provide a model system for the dynamic changes of soil colloid stability during long-term pedogenesis.

Potentiometric titration was used to measure the point of zero charge (pH_PZC, defined as the pH at which the net surface charge from all sources is zero) of the collected B horizon samples according to the procedure of Van Rij and Peech (1972). A 0.5 g portion of soil sample was added to a series of centrifuge tubes and divided into three groups, each of which was injected into 10 ml 0.1, 0.01, and 0.001 mol l−1 NaCl (i.e. solutions with different ionic strengths). Appropriate amounts of 0.1 mol l−1 HCl or NaOH and distilled water were added to make the final volume of the centrifuge tubes to 20 ml. The centrifuge tubes were then covered and shaken for 1 h at constant temperature for three successive days using a H2-9310K refrigerated shaker (TaiCang, Jiangsu, China). After equilibration for three days, the pH was measured in the clear supernatant liquid. The amount of H+ and OH− adsorbed by the samples, at a given pH value, was equal to the amount of HCl or NaOH added to the suspension minus the amount of acid or base required to bring the blank to the same pH. The net surface charge or adsorption density was plotted against the equilibrium pH of the system. The pH_PZC was identified by the common intersection point of the titration curves carried out in the presence of three concentrations of NaCl.

2.2.4. Water-dispersible colloids characterization and colloid stability measurement

The extraction of water-dispersible colloids fraction was accomplished following the procedure of Xiong and Chen (1990). A liter of distilled water was added to 15 g of soil samples, and the suspension was ultra-sonicated for 10 min. Colloid suspensions were then adjusted to pH levels ranging from 2.5 to 10.0 with 0.01 mol l−1 HCl or KOH, and transferred into 25 ml glass test tubes with a final colloid concentration of 500 mg l−1. These colloid suspensions were inverted 10 times, and then left to equilibrate for 3 h. The absorbance of the top 3 cm of suspension was measured at a wavelength of 600 nm and a light path length of 1 cm with a visible light spectrophotometer (722S, JingHua Science & Technology Instruments Co., Ltd., Shanghai, China). Colloid stability at each pH was expressed in terms of the percentage of colloid concentration remaining in suspension vs. pH values. The higher percentage of colloid remaining in suspension, the higher its colloid stability.

3. Results and discussions

3.1. Bulk soil chemistry

Surface soils exhibited lower pH values than those collected from the subsurface (Table 2). They also had higher organic carbon (OC) contents and cation exchange capacity (CEC) (Table 2). In both surface and subsurface soils, CEC increased linearly with OC content (r = 0.77, p < 0.05), suggesting that organic matter has the capability of adsorbing large quantities of cations. There is a decrease in the concentrations of Si, Ca, Mg, K and Na with advanced stages of weathering, whereas the concentrations of total Fe (Fe_t), free Fe oxides (Fe_f) and total Al as well as the ratio of Fe_f/Fe_t tend to increase as soils age (up to 1810 ka, i.e. from HB01 to HB05) (Table 2). Correspondingly, the Sa (Si2O3/Al2O3) and Sa/(Si2O3/(Al2O3 + Fe2O3)) values diminished with pedogenic time except for the oldest site (HB06, 2300 ka) (Table 2). The overall chemistry of the soil chronosequence followed expected trends in the loss of silica and bases and an enrichment of Fe and Al oxides (Table 2), which we attributed to the intensive weathering and leaching because of the abundant rainfall and high temperature in the tropical region. An exception was observed in the oldest site (HB06, 2300 ka) showing relatively high concentration of Si and low concentration of Fe and Al oxides (Table 2), which we attributed to the continuous addition of dust and/or plant residues over such a long time span. Although we do not have data on the dust composition in the present study, many previous researchers have identified the presence of eolian dust in soils of Hainan Island and other tropical regions (e.g. Chadwick et al., 1999; Derry and Chadwick, 2007; Li et al., 2013). The continuous additions of dust to soils during pedogenesis have been shown to play an important role in ecosystem fertility and biogeochemical cycling (Chadwick et al., 1999). In addition to the contribution of dust deposition to soil constituents, the Si-accumulating plants could also deposit significant amounts of amorphous hydrated silica (a kind of biogenic silica) as opal phytoliths (Meunier et al., 1999; Street-Perrott and Barker, 2008). The biogenic silica in basalt-derived soils in Hainan Island and its important role in tropical soil formation and evolution have been discussed in detail by He and Zhang (2010). Thus we believe that the inconstancy of soil chemistry change observed in the oldest soil (HB06, 2300 ka) reflects the reverse weathering stage due to the concurrent decrease of chemical weathering rate and increasing accumulations of dust and plant residues during the long-term pedogenesis. However, this needs to be further tested by the in situ investigation of dust composition and biogenic silica formation.

3.2. Clay mineralogy

Changes in clay minerals in the A and C horizons of soil profiles as a function of time have been reported elsewhere (He et al., 2008), documenting a decrease of 2:1 minerals and an increase of kaolinite and gibbsite toward more advanced stages of weathering. The initial presence of illite in the A horizon was rather unexpected as there was no magmatic micaceous or phyllosilicate phase in the basalts and the formation of illite was attributed to a secondary process created by alka- lization transport through plant materials according to He et al. (2008). The X-ray diffraction spectra of the clay fraction in the B horizon were shown in Fig. 1. Intensities at 0.72 nm and 0.357 nm in all the clay fractions indicate relatively high amounts of kaolinite. The kaolinite is characterized by an increase in crystallinity with weathering time, i.e. the increased presence of narrow peaks at 0.72 nm and 0.357 nm. The weak peaks at 0.334 nm from 90 ka to 600 ka soils indicate the presence of small quantities of quartz, which are not detectable in the older soils (~600 ka). The increasing loss of silica from the soils is reflected in the clays by the presence of gibbsite (i.e. intensities at 0.484 nm) in the soils after 180,000 years of formation. The peak at 1.42 nm, which was identified by K-300 °C and K-550 °C disposal, is attributed to the presence of interlayer minerals between vermiculite and chlorite. The
semi-quantitative assessment of clay minerals in the B horizons of the studied chronosequence is shown in Table 3. The B horizon soils followed expected patterns of soil clay mineralogy as a function of time, with kaolinite dominating and the eventual strong presence of gibbsite. Under the high temperature and rainfall conditions of this tropical area, the primary minerals are expected to weather rapidly to form secondary minerals, resulting in the increase of kaolinite and gibbsite and a decrease of quartz, feldspar and halloysite at more advanced stages of weathering. A similar pattern in clay mineralogy was shown by Chorover et al. (2004) for a humid tropical soil chronosequence developed on Hawaiian basalt ranging in age from 0.3 to 4100 ka. In their study, the parent mineralogy was dominated by glass, olivine, pyroxene, and feldspar, whereas poorly crystalline weathering products (allophone, microcrystalline gibbsite, and ferrihydrite) accumulated in early to intermediate weathering stages (through 400 ka), and crystalline secondary minerals (kaolinite, gibbsite, and goethite) were dominate in the oldest soils.

3.3. Surface charge-pH curves

The surface charge-pH curves for all B horizon samples measured in the three NaCl concentrations (i.e. 0.001 to 0.1 mol l\(^{-1}\)) intersected one another (Fig. 2) in accord with the prior studies of kaolinitic tropical soils from Hawaii (Chorover and Sposito, 1995) and some Alfisols and Ultisols from Nigeria (Gallez et al., 1976). The pH\(_{PZC}\) of the surface charge-pH curves was on the acid side of the zero point of titration (where equal quantities of HCl and NaOH were added), which was attributed to the presence of permanent negative charge (Van Raij and Peech, 1972). The permanent negative charge originates from isomorphic substitution of cations within the clay mineral structure, such as the replacement of Si (IV) by Al (III) and/or Fe (III). With increased degree of soil development, the content of 2:1-type clay minerals decreased while kaolinite and Fe and Al oxides increased leading to the decline of the permanent negative charge in the older tropical soils (Jiang et al., 2011). In our studied soil chronosequence, the net surface charge of B horizons at pH\(_{PZC}\) decreased from 20 cmol kg\(^{-1}\) in HB01 (90 ka) to 0.2 cmol kg\(^{-1}\) in HB06 (2300 ka) (Fig. 2), confirming the increase of kaolinite (Fig. 1, Table 3) and Fe and Al oxides (Table 2) with soil age. Accordingly, the pH\(_{PZC}\) values increased consistently from 2.9 in the youngest soil (HB01, 90 ka) to 5.0 in the oldest soil (HB06, 2300 ka) (Fig. 2). The variations of pH\(_{PZC}\) in the studied soil chronosequence reflect different proportions of kaolinite (pH\(_{PZC}\) 2.8-4.8, Tschapek et al., 1974) and Fe oxides (pH\(_{PZC}\) 6-9, Parks and De Bruyn, 1962) during pedogenesis. In all cases, the pH\(_{PZC}\) occurred below the natural pH value of soils at 6.8, Tschapek et al., 1974).

Table 3

<table>
<thead>
<tr>
<th>B horizon of the profile</th>
<th>Soil age ka</th>
<th>Clay minerals</th>
</tr>
</thead>
<tbody>
<tr>
<td>HB01</td>
<td>90</td>
<td>+ + + + + + +</td>
</tr>
<tr>
<td>HB02</td>
<td>180</td>
<td>+ + + + + + +</td>
</tr>
<tr>
<td>HB03</td>
<td>600</td>
<td>+ + + + + + +</td>
</tr>
<tr>
<td>HB04</td>
<td>1120</td>
<td>+ + + + + + +</td>
</tr>
<tr>
<td>HB05</td>
<td>1810</td>
<td>+ + + + + + +</td>
</tr>
<tr>
<td>HB06</td>
<td>2300</td>
<td>+ + + + + + +</td>
</tr>
</tbody>
</table>

Note: Q, Quartz; I, 1.4 nm intergradent minerals; F, Feldspar; H, Halloysite; K, Kaolinite; G, Gibbsite. –, undetectable; +, 5%-15%; + +, 15%-25%; + + +, 25%-50%; + + + + , >50%.
the soil (Fig. 2) indicating that soil colloids bear net negative charges under natural conditions. The ΔpH defined as the difference between soil pH and the pHPZC of soil colloids decreased with advanced stages of weathering and soil formation (Fig. 2) due to the decline of net surface charge. Thus the more developed soil is increasingly more affected by the added acid or base as indicated by the slope of potentiometric titration curve (Fig. 2). This leads to poorer buffering capacity as soils age. Our study of surface charge properties of B horizons demonstrate that both pHPZC and ΔpH can be used as indicators of soil development degree, with highly weathered tropical soils (e.g. HB05, HB06) characterized by relatively high pHPZC (~5.0) and low ΔpH (approaches zero) (Fig. 2) due to the predominance of kaolinite, Fe and Al oxides and hydrous oxides (Table 2 and Table 3). The measured pHPZC of highly weathered soils (e.g. HB05, HB06) in the present study (Fig. 2) are close to the pHPZC reported for some Ultisols (pHPZC 4–5) and Oxisols (pHPZC 5–6) from Hawaii and Malaysia (Anda et al., 2008; Chorover et al., 2004; Keng and Uehara, 1973). The convergence of surface charge properties at late weathering stages for these humid-tropical soils from Hawaii, Malaysia, and Hainan Island shows that weathering environment and time can eventually overcome diverse parent lithologies in the course of producing a “climax” mineralogy and surface chemistry.

3.4. Stability of water-dispersible soil colloids

Settling-rate characteristics of water-dispersible colloid fractions in the B horizons of the chronosequence under various pH conditions were shown in Fig. 3. The influence of pH on water-dispersible colloid stability was evident, showing increased colloid stability at higher pH values for all B horizon samples (i.e. higher percentage of colloids remaining in the suspension) (Fig. 3). This is because that colloid surface charge, whether positive or negative, is affected by the pH of suspensions (Xiong and Chen, 1990; Van Olphen, 1977). As pH increases, the

![Fig. 2. Surface charge-pH curves of B horizons in the studied soil chronosequence at various NaCl concentrations. PZC: point of zero charge.](image-url)
negative charge on colloid surface also increases, resulting in the elevated repulsive force between colloid particles and consequently enhanced colloid dispersion (stability). Conversely, decreasing the pH of suspensions increases the positive charge on colloid surface that causes the decline of colloid surface potential energy and promotes colloid flocculation (instability). Thus the decline of soil pH with pedogenic time (Table 2) is expected to cause lower colloid stability in older soils. Regardless of soil age, Fig. 3 showed that decreasing the pH below point of zero charge (pH_{PZC}) resulted in a sharp decrease in the amount of colloids remaining in suspension. As the pH of the colloids approaches its pH_{PZC}, edge-to-face bonding takes place, as well as bonding of positive Fe and Al oxides to negative clay surface (Van Olphen, 1977). These processes decrease the net surface potential to the point that coagulation occurs (Fig. 3). The pH-dependent colloid stability in Fig. 3 is in agreement with prior studies of water-dispersible colloid behavior from soils in America, Nigeria and Cameroon (Igwe et al., 2009; Nguetnkam and Dultz, 2011; Seta and Karathanasis, 1996, 1997).

Water-dispersible colloids in the B horizons of the studied chronosequence showed a decrease in stability with time and the rate of decline diminished with advanced stages of weathering and soil formation (Fig. 3). The percentage of colloids remaining in the suspension at natural soil pH was relatively high for the young tropical soils (i.e. 44% for HB01, 90 ka, and 64% for HB02, 180 ka), and this ratio decreased rapidly to 15% for HB03 (600 ka) and 12% for HB04 (1120 ka) (Fig. 3). In the oldest soils (HB05, 1810 ka, and HB06, 2300 ka), only 7% and 5% of the colloids remained in the suspension at natural soil pH implying significant colloid flocculation occurred in these soils (Fig. 3). The decreasing colloid stability with tropical soil development coincided with the substantial changes in clay mineral compositions and colloid surface charge properties (Figs. 1 and 2). Clay minerals in the studied chronosequence were characterized by an increase of kaolinite and gibbsite and a decrease of quartz and halloysite towards more advanced stages of weathering (Table 3). Kaolinite particles have a tendency to remain flocculated at pH < 7.5 due to strong attraction of oppositely charged crystal faces (Tama and El-Swaify, 1978). Thus the increasing abundance of kaolinite in the older soils (e.g. HB05, 1810 ka and HB06, 2300 ka) (Table 3) contributed to the accelerated decrease in colloid stability with decreasing pH (Fig. 3). Furthermore, high amounts of Fe and Al (hydroxy)oxides present in the older soils (Table 2) could also contribute to colloids instability (Fig. 3) as confirmed by many previous studies (e.g. Goldberg et al., 1990; Igwe et al., 2009). Because organic coatings have been found to promote colloid dispersion (stability) by stearic hindrance (Kretzschmar et al., 1995), the decline of organic matter in older soils (Table 2) thus could lead to the decreasing colloid stability as soils age. The reduction of 2:1-type clay minerals and raise of kaolinite, Fe and Al oxides as well as the decrease of organic matter content during pedogenesis (Table 2 and Table 3) all contribute to the decline of permanent negative charges in the older soils. This is in accord with the prior studies of surface charge properties in the highly weathered tropical soils (e.g. Chorover et al., 2004; Jiang et al., 2011). The point of zero charge (pH_{PZC}) increased while ΔpH decreased across the studied tropical soil chronosequence (Fig. 2), being in good agreement with the observed lower colloid stability (i.e. dispersibility) in aged soils (Fig. 3). In addition to the above mechanisms controlling
colloid stability, Morrison and Boyd (1973) suggested that the rate of flocculation is a function of collision frequency and is directly related to (i) the fraction of collisions that have sufficient energy, and (ii) the fraction of collisions that have proper orientation. Increasing the pedogenic time will allow more collisions and interaction among colloids to occur and therefore improve the chances for flocculation.

3.5. Implications of changing colloid stability during long-term pedogenesis

The evolution of relatively high dispersive colloids to lower dispersive colloids during pedogenesis (Fig. 4) is in agreement with the initial leaching of mobile colloids and gradual accumulations of clay and Fe oxides in the illuvial horizons (Uehara and Gillman, 1981). This has important implications for interpreting element mass balance data at the soil profile scale as well as for understanding the environmental fate of nutrients and contaminants. Many studies of soil formation rely on refractory elements to calculate gains and losses of elements in a soil profile by assuming the complete immobility for an index refractory element such as Ti or Zr (e.g. Brimhall and Dietrich, 1987; Chadwick et al., 1990). However, recent studies have demonstrated and highlighted the mobility of refractory elements (e.g. Bern et al., 2015; Kurtz et al., 2000) via the mobilization and redistribution of colloid particles (Du et al., 2012; Thompson et al., 2006). For instance, Thompson et al. (2006) observed over 10% of Ti and between 1% and 5% of Zr, Nb, La, and U are mobilized in colloidal form at maximum dispersion during single reducing cycles of 14-day reduction-oxidation experiments. The humid tropical soils studied here and elsewhere experience numerous redox oscillations during long-term pedogenesis, which are expected to result in mobilization and transport of refractory elements through colloid illuviation and redistribution in soil profiles. This seldom recognized mechanism may explain Ti and Zr mobility and enrichment that have been observed in many highly weathered tropical soils (Cornu et al., 1999).

Mobile colloids are widely recognized as potential carriers of sorbed nutrients and contaminants (e.g. Buettner et al., 2014; De Jonge et al., 2004a, 2004b; Kretzschmar and Schäfer, 2005; McCarthy and Zachara, 1989), but the changing colloid stability resulting from long-term pedogenesis as well as its effects on the mobilization and transport of nutrient and/or toxic elements have not been previously recognized. The observed relatively high dispersion (stability) of colloids during initial stage of pedogenesis (Fig. 4) illustrates the potential for mobilization and vertical transport of nutrients and contaminants through colloid illuviation. Careful management practices are thus required to avoid colloid dispersion and transport in young tropical soils either by reducing the frequency/intensity of pore-water flow or by liming to counter the high permanent negative charges. At later stages of soil development, the low dispersive colloids (i.e. instability) are prone to flocculate at the natural soil pH (Fig. 4), resulting in net accumulations of clay and Fe oxides and progressive decrease of permeability in the argillic horizon, as confirmed by previously studies of soil development on Quaternary terraces in Cajon Pass, California and northern Spain (e.g. Torrent, 1976; McFadden and Weldon, 1987). Consequently, there is an

![Fig. 4. Conceptual model of tropical soil development under hot and humid conditions in Hainan Island and its effects on colloid stability.](image-url)
increasing tendency for a perched water table to appear as soils age, which would cause aqueous element transfer under the prolonged reducing conditions (e.g. Kjærgaard et al., 2012). Given the rushing pace and varying trajectories of soil change in the Anthropocene (Richter et al., 2011), a better understanding of colloid formation, release, stability, transport and deposition in the soils of differing pedogenesis is therefore of utmost importance for developing quantitative models of nutrients and contaminants transport and strategies for the improvement of ecosystem service and function in the Critical Zone.

4. Conclusion

Long-term tropical soil development under hot and humid conditions, which involves rapid weathering of primary silicate minerals, gradual transformation of 2:1-type clay minerals to kaolinite and gibbsite, continuous leaching of base cations, and increasing accumulations of Fe and Al (hydro)oxides in the subsurface B horizons, results in the decline of permanent negative charges and ΔpH and consequently decreases the stability of water-dispersible soil colloids (Fig. 4). The documented changing colloid stability at long-term pedogenic time scale has important implications for interpreting the mobility of refractory elements (e.g., Ti, Zr) in many highly weathered tropical soils as well as for understanding the environmental fate of nutrients and contaminants. Given the rushing pace and varying trajectories of soil change in the Anthropocene, a better understanding of colloid formation, release, stability, transport and deposition in the soils of differing pedogenesis is therefore of utmost importance for developing quantitative models of nutrients and contaminants transport as well as strategies for the improvement of ecosystem service and function in the Critical Zone.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 4157130051 and 41130530) and Scientific Research Project of Institute of Geographic Sciences and Natural Resources Research (No. Y5V5001LYE). We would like to thank Dr. Li Huang from Huazhong Agriculture University for their assistance in determining soil clay mineral compositions.

References
